skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lou, Yuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider, for N ≥<#comment/> 2 N \geq 2 , the system of N N competing species which are ecologically identical and having distinct diffusion rates { D i } i = 1 N \{D_i\}_{i=1}^N , in an environment with the carrying capacity m ( x , t ) m(x,t) . For a generic class of m ( x , t ) m(x,t) that varies with space and time, we show that there is a positive number D ∗<#comment/> D_* independent of N N so that if D i ≥<#comment/> D ∗<#comment/> D_i \geq D_* for all 1 ≤<#comment/> i ≤<#comment/> N 1\le i\le N , then the slowest diffusing species is able to competitively exclude all other species. In the case when the environment is temporally constant or temporally periodic, our result provides some further evidence in the affirmative direction regarding the conjecture by Dockery et al. [J. Math. Biol. 37 (1998), pp. 61–83]. The main tool is the theory of the principal Floquet bundle for linear parabolic equations. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)